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One-pot construction 3,4-dihydropyrimidin-2(1H )-
ones catalysed by samarium(III)†
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An efficient synthesis of dihydropyrimidin-2(1H)-ones using samarium(III) nitrate hexahydrate as a catalyst from an
aldehyde, 1,3-dicarbonyl compounds and urea under solventless conditions is described. Compared with the
classical Biginelli reaction, the yields of this protocol increased from 20–50% to 78–98% while the reaction time was
significantly shortened from 18 h to 15–30 min.
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The classical Biginelli reaction, first described in 1893 , was a
one-pot condensation using β-dicarbonyl compounds with
aldehydes (aromatic and aliphatic aldehydes) and urea or
thiourea in ethanol solution containing catalytic amounts of
acid1 to afford dihydropyrimidinones which exhibit important
pharmacological properties (i.e. calcium channel blockers,
antihypertensive agents and α-1a-antagonists.)2 This method,
however, involves long reaction time, harsh reaction conditions
and unsatisfactory yields.Therefore, the discovery of milder and
practical routes for the synthesis of dihydropyrimidin-2(1H)-
ones by the Biginelli reaction continues to attract the attention of
researchers. Recently, BF3

.OEt2,3 polyphosphate ester (PPE),4

KSF clay,5 indium chloride,6 ferric chloride hexahydrate,7

lanthanum chloride,8 and lanthanide triflate9 are found to be
effective for this transformation. More recently, several other
conditions for the one-pot synthesis of dihydropyrimidinones
have also been reported.10-16 However, many of these one-pot
procedures generally employ strong protic or Lewis acids,
prolonged reaction time, hazardous reagents (such as
acetonitrile) and high temperature. Meanwhile, environmental
concerns in chemical research and industry are ever increasing.
The possibility of performing multicomponent reactions under
solventless conditions could enhance their efficiency from an
economic as well as an ecological point of view, so solvent-free
chemical synthesis has recently received much attention.17

Consequently, there is scope for further improvement toward
milder reaction conditions, and better yields.

In recent years, Sm(III) has been used as an efficient Lewis
acid for various transformation such as carbon–carbon double
bond formation,18 aldol condensation,19 β-diketone and α-
Selenoketones synthesis.20-21 In this paper we report a general
and practical route for the Biginelli cyclocondensation reaction
using Sm(III) as the catalyst under solvent-free conditions as
shown in Scheme 1. This is a novel, one-pot combination that
not only preserves the simplicity of Biginelli’s one-pot reaction
but also consistently produces excellent yields of the
dihydropyrimidin-2(1H)-ones and greatly decreases
environmental pollution. In the presence of Sm(NO3)3

.6H2O 
(0.3 mmol), the reaction of benzaldehyde ( 1a, 1 mmol), ethyl

acetoacetate (2a,1 mmol), and urea (3 ,1.5 mmol) was carried
out in a one-pot condensation under solvent-free conditions for
20 min, and resulted in formation of 4-phenyl-3,4-
dihydropyrimidin-2(1H)-one (4a) in 92% yield. A wide range
of structurally varied 1,3-dicarbonyl compounds, aldehydes
and urea proceeded smoothly and were very fast to give the
corresponding 3,4-dihydropyrimidin-2(1H)-ones in high yields
as listed in Table 1. Many pharmacologically relevant
substitution patterns on the aromatic ring could be introduced
with high efficiency. Most importantly, aromatic aldehydes
carrying either electron-donating or electron-withdraw
substituents all reacted very well, giving moderate to excellent
yields. Moreover, when aliphatic aldehydes, 1,3-dicarbonyl
compounds, and urea reacted under solventless conditions and
catalysed by Sm(III), the corresponding dihydropyrimidinones
were also provided in high yields.

We propose a mechanism of the Sm(III)-catalysed reaction
as shown in Scheme 2. Aldehyde reacts with urea to form an
acyl imine intermediate 6 which is activated by Sm(III).
Subsequent addition of the β-carbonyl compound followed by
cyclisation and dehydration affords the dihydropyrimidinones.

In conclusion, we have developed a novel and simple
modification of the Biginelli dihydropyrimidine reaction. 
By using Sm(NO3)3

.6H2O as the catalyst under solvent-free
conditions from readily available starting materials, the yields
can be increased from 20–50% to 78–98% while the reaction
time was shortened from 18 h to 15–30 min. Therefore, this
Sm(III)-catalysed Biginelli reaction is a simple, high-yielding,
timesaving, and environmentally friendly protocol, which
make it an important alternative to the classical acid-catalysed
Biginelli reaction. 

Experimental

Melting points were determined by using a Yanaco micro melting
point apparatus and were not corrected. IR spectra were recorded on
a Bruker Vector 22 spectrophoto-meter using KBr pellets for solids.
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1H NMR and 13C NMR spectra were measured on a Bruker AM -400
MHz or AM-500 Mhz spectrometer using DMSO-d6 as the solvent
and using TMS as internal standard. Mass spectra were obtained on
an HP 5989B MS spectrometer at an ionisation potential of 70 eV.
General procedure for the preparation of 3,4-dihydropyrimidin-
2(1H)-ones 4: Aldehyde (1, 1 mmol), 1,3-dicarbonyl compound (2, 1.5
mmol), urea (3, 1.5 mmol) and Sm(NO3)3

.6H2O (133.4 mg, 0.3 mmol)
were heated at 100°C under stirring for 15–30 min as shown in Table
1. Then water was added, and the product was extracted with ethyl
acetate. The organic layer was dried over anhydrous Na2SO4 and
evaporated. The residue was washed with ether, and then recrystallised
from ethanol to afford the product 4.

5-Ethoxycarbonyl-4-ethyl-6-methyl-3,4-dihydropyrimidi-2(1H)-one
(4f): m.p. 179–181 oC; IR(KBr): 3250, 3123, 2962, 1723, 1703, 1675
cm-1; 1H NMR (DMSO-d6, 500 MHz): δ 8.82 (s, 1H, NH), 7.18 (s, 1H,
NH), 4.03–4.09 (m, 3H, H–4 and OCH2CH3), 2.16 (s, 3H, C6–CH3),
1.41 (m, 2H, CH2CH3), 1.17 (t, J=6.0 Hz, 3H, OCH2CH3), 0.78 (t,
J=7.5 Hz, 3H, CH2CH3); 13C NMR: δ 165.3, 152.6, 148.1, 98.7, 58.8,
51.2, 29.4, 17.5, 14.0, and 8.31; MS (70 eV, EI): m/z 212 (M+,0.43%).

5-Ethoxycarbonyl-4-isobutyl-6-methyl-3,4-dihydropyrimidi-
2(1H)-one (4g): m.p. 185–186 oC; IR(KBr): 3447, 3244, 3112, 2951,
1701, 1652 cm-1; 1H NMR (DMSO-d6, 500 MHz): δ 8.86 (s, 1H,
NH), 7.32 (s, 1H, NH), 4.01–4.10 (m, 3H, H–4 and OCH2CH3), 2.16
(s, 3H, C6–CH3), 1.69 (m, 1H, CH2CH(CH3)2), 1.35 (m, 1H,
CH2CH(CH3)2), 1.17 (t, J=7.0 Hz, 3H, OCH2CH3), 1.10 (m, 1H,
CH2CH(CH3)2), 0.85 (d, J=6.5 Hz, 6H, CH2CH(CH3)2,) ; 13C NMR:
δ 165.1, 152.6, 147.9, 100.2, 58.8, 48.1, 45.8, 23.5, 22.7, 21.3, 17.4,
14.0; MS (70 eV, EI): m/z 241 (M++1,1.08%).

5-Me thoxycarbony l -4 - (3 -n i t ropheny l ) -6 -me thy l -3 ,4 -
dihydropyrimidi-2(1H)-one (4h): m.p. 240–241oC (dec.); IR(KBr):
3358, 3244, 3102, 2957, 1701, 1641 cm-1; 1H NMR (DMSO-d6, 500
MHz): δ 9.31 (s, 1H, NH), 8.09–8.13 (m, 2H, Ar–H),7.85 (s, 1H,
NH), 7.63–7.70 (m, 2H, Ar–H), 5.31 (d, J=3.0 Hz, 1H, H–4), 3.35 (s,
3H, COOCH3), 2.28 (s, 3H, C6–CH3); 13C NMR: δ 165.5, 151.7,
149.6, 147.8, 146.6, 132.8, 130.1, 122.3, 120.8, 98.0, 53.3, 50.8, 17.8;
MS (70 eV, EI): m/z 291 (M+, 5.86%).

5-Methoxycarbonyl -4-(2-chlorophenyl ) -6-methyl -3 ,4-
dihydropyrimidi-2(1H)-one (4k): m.p. 226–229 oC; IR(KBr): 3367,
3221, 3103, 2948, 1714, 1698 cm-1; 1H NMR (DMSO-d6, 500 MHz):
δ 9.21 (s, 1H, NH), 7.59 (s, 1H, NH), 7.25–7.40 (m, 4H, Ar–H), 5.62
(d, J=2.5 Hz, 1H, H–4), 3.45 (s, 3H, COOCH3), 2.30 (s, 3H, C6–CH3);
13C NMR: δ 165.4, 151.3, 149.3, 141.4, 131.6, 129.4, 129.0, 128.6,
127.6, 97.6, 51.3, 50.6, 17.6 ; MS (70 eV, EI): m/z 280 (M+, 5.13%).

5-Methoxycarbonyl-4-ethyl-6-methyl-3,4-dihydropyrimidi-2(1H)-
one (4l): m.p. 184–185 oC; IR(KBr): 3249, 3118, 2961, 1728, 1708,
1680cm-1; 1H NMR (DMSO-d6, 500 MHz): δ 8.96 (s, 1H, NH), 7.30
(s, 1H, NH), 4.01 (m, 1H, H–4), 3.59 (s, 3H, COOCH3), 2.16 (s, 3H,
C6–CH3) 1.39 (q, J=7.5 Hz, 2H, CH2CH3,), 0.77 (t, J=7.5 Hz, 3H,
CH2CH3); 13C NMR: δ 165.9, 152.7, 148.6, 98.5, 51.3, 50.7, 29.5,
17.7, 8.4; MS (70 eV, EI): m/z 198 (M+,0.59%).

5-Methoxycarbonyl-4-propyl-6-methyl-3,4-dihydropyrimidi-2(1H)-
one (4m): m.p. 174–175 oC; IR(KBr): 3442, 3252, 3123, 2957, 1726,

1708, 1653 cm-1; 1H NMR (DMSO-d6, 400 MHz): δ8.94(s, 1H, NH),
7.31 (s, 1H, NH), 4.03 (t, J=3.2Hz, 1H, H–4), 3.59 (s, 3H, COOCH3),
2.15 (s, 3H, C6–CH3) 1.19–1.40 (m, 4H, CH2CH2CH3), 0.82 (t, J=6.7
Hz, 3H, CH2CH2CH3,) ; 13C NMR: δ 165.8, 152.6, 148.3, 99.1, 50.6,
49.8, 17.6, 16.9, 13.6; MS (70 eV, EI): m/z 212 (M+,0.43%).

5-Methoxycarbonyl-4-isobutyl-6-methyl-3,4-dihydropyrimidi-
2(1H)-one (4n): m.p. 178–179 oC; IR(KBr): 3442, 3252, 2957, 1726,
1708, 1653 cm-1; 1H NMR (DMSO-d6, 500 MHz): δ 8.88 (s, 1H,
NH), 7.32 (s, 1H, NH), 4.03 (t, J=4.5Hz, 1H, H-4), 3.60 (s, 3H,
COOCH3), 2.16 (s, 3H, C6–CH3), 1.69 (m, 1H, CH2CH(CH3)2), 1.37
(m, 1H, CH2CH(CH3)2), 1.11 (m, 1H, CH2CH(CH3)2), 0.85 (m, 6H,
CH2CH(CH3)2) ; 13C NMR: δ 165.7, 152.6, 148.0, 100.2, 50.5, 48.2,
45.8, 23.4, 22.7, 21.4, 17.5; MS (70 eV, EI): m/z 227 (M++1,0.63%).

5-Aceto-4-(3-nitrophenyl)-6-methyl-3,4-dihydropyrimidi-2(1H)-
one (4q): m.p. 268–270 oC (dec.); IR(KBr): 3349, 3273, 3062, 1715,
1680 cm-1; 1H NMR (DMSO-d6, 400 MHz): δ 9.33 (s, 1H, NH), 7.98
(s, 1H, NH), 7.61–8.12 (m, 4H, Ar–H), 5.40 (d, J=3.2 Hz, 1H, H–4),
2.32 (s, 3H, COCH3), 2.19 (s, 3H, C6–CH3); 13C NMR: δ 193.9,
151.9, 149.0, 147.8, 146.3, 132.9, 130.1, 122.2, 121.0, 109.4, 52.9,
30.5, 19.0; MS (70eV, EI): m/z 275 (M+, 4.34%).

5-Aceto-4-propyl-6-methyl-3,4-dihydropyrimidi-2(1H)-one (4r):
m.p. 151–152 oC; IR(KBr): 3247, 3113, 2956, 1723, 1625 cm-1; 
1H NMR (DMSO-d6, 400 MHz): δ 8.94 (s, 1H, NH), 7.42 (s, 1H,
NH), 4.09 (t, J=3.2 Hz, 1H, H–4), 2.18 (s, 3H, COCH3), 2.16 (s, 3H,
C6-CH3), 1.20 (m, 4H, CH2CH2CH3), 0.82 (t, J=7.0 Hz, 3H,
CH2CH2CH3); 13C NMR: δ 194.5, 153.3, 147.8, 111.1, 50.5, 30.6,
19.3, 17.6, 14.2; MS (70 eV, EI): m/z 196 (M+, 1.27%).
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